Mammalian DNA demethylation

نویسنده

  • Lars Schomacher
چکیده

DNA cytosine methylation is a reversible epigenetic mark regulating gene expression. Aberrant methylation profiles are concomitant with developmental defects and cancer. Numerous studies in the past decade have identified enzymes and pathways responsible for active DNA demethylation both on a genome-wide as well as gene-specific scale. Recent findings have strengthened the idea that 5-methylcytosine oxidation catalyzed by members of the ten-eleven translocation (Tet1-3) oxygenases in conjunction with replication-coupled dilution of the conversion products causes the majority of genome-wide erasure of methylation marks during early development. In contrast, short and long patch DNA excision repair seems to be implicated mainly in gene-specific demethylation. Growth arrest and DNA damage-inducible protein 45 a (Gadd45a) regulates gene-specific demethylation within regulatory sequences of limited lengths raising the question of how such site specificity is achieved. A new study identified the protein inhibitor of growth 1 (Ing1) as a reader of the active chromatin mark histone H3 lysine 4 trimethylation (H3K4me3). Ing1 binds and directs Gadd45a to target sites, thus linking the histone code with DNA demethylation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active DNA demethylation in mammalian preimplantation embryos: new insights and new perspectives.

DNA methylation and demethylation are crucial for modulating gene expression and regulating cell differentiation. Functions and mechanisms of DNA methylation/demethylation in mammalian embryos are still far from being understood clearly. In this review we firstly describe new insights into DNA demethylation mechanisms, and secondly introduce the differences in active DNA methylation patterns in...

متن کامل

Hydroxylation of 5-Methylcytosine by TET1 Promotes Active DNA Demethylation in the Adult Brain

Cytosine methylation is the major covalent modification of mammalian genomic DNA and plays important roles in transcriptional regulation. The molecular mechanism underlying the enzymatic removal of this epigenetic mark, however, remains elusive. Here, we show that 5-methylcytosine (5mC) hydroxylase TET1, by converting 5mCs to 5-hydroxymethylcytosines (5hmCs), promotes DNA demethylation in mamma...

متن کامل

GADD45A Does Not Promote DNA Demethylation

Although DNA methylation patterns in somatic cells are thought to be relatively stable, they undergo dramatic changes during embryonic development, gametogenesis, and during malignant transformation. The enzymology of DNA methyltransferases is well understood, but the mechanism that removes methylated cytosines from DNA (active DNA demethylation) has remained enigmatic. Recently, a role of the ...

متن کامل

DNA Demethylation Dynamics

The discovery of cytosine hydroxymethylation (5hmC) suggested a simple means of demethylating DNA and activating genes. Further experiments, however, unearthed an unexpectedly complex process, entailing both passive and active mechanisms of DNA demethylation by the ten-eleven translocation (TET) and AID/APOBEC families of enzymes. The consensus emerging from these studies is that removal of cyt...

متن کامل

DNA Demethylation Pathways: Recent Insights

DNA methylation is a major epigenetic regulatory mechanism for gene expression and cell differentiation. Until recently, it was still unclear how unmethylated regions in mammalian genomes are protected from de novo methylation and whether or not active demethylating activity is involved. Even the role of molecules and the mechanisms underlying the processes of active demethylation itself is blu...

متن کامل

Virion protein 16 induces demethylation of DNA integrated within chromatin in a novel mammalian cell model.

DNA methylation and demethylation play important roles in mediating epigenetic regulation. So far, the mechanism of DNA demethylation remains elusive and controversial. Here, we constructed a plasmid, named with pCBS-luc, that contained an artificial CpG island, eight Gal4 DNA-binding domain binding site, an SV40 promoter, and a firefly luciferase reporter gene. The linearized pCBS-luc plasmid ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013